Chaptere 29
 Our Solar System

section 29.1 Overview of Our Solar System

In your textbook, read about early ideas.
Write the letter of the term from Column B next to its matching item in Column A.

Column A

1. Motion of a planet moving in the opposite direction of the normal direction of planetary motion as observed from Earth
2. Point in a planet's orbit when it is farthest from the Sun
3. Nicolaus Copernicus's model of the solar system in which the planets orbit the Sun
4. Oval shape centered on two points instead of one point
5. Point in a planet's orbit when it is closest to the Sun
6. Defines a planet's elliptical orbit as the ratio of
the distance between the foci and the length of the major axis
7. Unit of measure that is the average distance between the Sun and Earth $\left(1.4960 \times 10^{8} \mathrm{~km}\right)$
\qquad
\qquad

Column B

a. aphelion
b. astronomical unit
c. eccentricity
\qquad d. ellipse
e. heliocentric
\qquad f. perihelion
\qquad g. retrograde
\qquad

In your textbook, read about gravity and orbits.
Use each of the terms below just once to complete the passage.

acceleration	center of mass	distance	force
Isaac Newton	masses	Moon	universal gravitation

English scientist (8) \qquad developed an understanding of gravity by observing the motion of the (9) \qquad , the orbits of the planets, and the (10) \qquad of falling objects on Earth. He learned that two bodies attract each
other with a (11) \qquad that depends on their (12)
and the (13) \qquad between the bodies. This is called the law of
(14) \qquad .He also determined that each planet orbits a point between
itself and the Sun. That point is called the (15) \qquad .

Thinking Critically

Planetary Motion

Kepler's laws of planetary motion demonstrate that each planet's orbit around the Sun sweeps out in a shape called an ellipse, rather than a circle. This means that a planet does not maintain a constant distance from the Sun. Kepler found that an imaginary line between the Sun and a planet sweeps out equal amounts of area in equal amounts of time. Kepler also discovered a mathematical relationship between the size of a planet's ellipse and its orbital period.
Use the terms below to label the two diagrams.

foci	semimajor axis	perihelion
major axis	aphelion	Sun

Elliptical Orbit of a Planet

1.

\qquad
3.

7. How does a model of the solar system in which the planets have elliptical orbits explain the difference in the speed of the planets?
\qquad
\qquad
\qquad
\qquad
\qquad

